Mini-review: The history and future of the cornual nerve block for calf disbudding

David B. Sheedy,1,2* Sharif S. Aly,13 Cassandra B. Tucker,4 and Terry W. Lehenbauer13

Abstract: Disbudding damages the germinal horn bud cells and prevents subsequent horn growth in young calves. Hot-iron cautery or caustic paste are the most common disbudding techniques and are unequivocally painful procedures. An important technique in controlling the acute pain experienced during disbudding is the cornual nerve block (CNB) that utilizes a local anesthetic agent and targets a branch of the trigeminal cranial nerve, the zygomaticotemporal nerve, as it travels along the temporal groove of the skull. Though CNBs has been utilized since 1932, practitioners have reported variability in achieving full desensitization of the horn bud region since its inception. This failure may have led to the establishment of variations in the cornual nerve block technique, without consensus on a reliable and repeatable approach. Reasons for cornual nerve block failures may include: technical errors by the practitioner, such as an injection into subcutaneous or deep muscle bodies; biologically significant path variations in the zygomaticotemporal nerve and its cornual branches; and secondary innervation of the horn bud region, particularly the cornual branches of the infratrochlear nerve. Further investigation into documenting and understanding CNB failure and alternatives, like regional perfusion, are warranted.

It is common practice in the dairy industry to prevent horn growth by removal of the germinal horn buds from young calves, typically at less than 8 wks of age, a process known as disbudding (Cozzi et al., 2015; NAHMS 2016). It is reported that 94% of US dairy operations disbuds calves, with hot-iron cautery used in 55% of cases and caustic paste in 33% (NAHMS, 2016). Similarly, in the European Union 89% of dairy operations disbuds, with cautery used in 80% and caustic paste in 16%, inclusively (Cozzi et al., 2015). Disbudding is unequivocally painful with a long history of efforts to alleviate the immediate and chronic effects (Winder et al., 2018), including the development of the cornual nerve block (CNB) (Emmerson, 1933). Incomplete desensitization can occur with the CNB and there is no consensus on the most reliable and repeatable approach for this block (Table 1). The objective of this mini-review is to present: 1) the historical perspective and use of CNB in the context of dehorning/disbudding, 2) the subsequent development and technical variation of the CNB, 3) horn bud innervation and its impact on CNB effectiveness, 4) alternatives to the CNB for acute pain management and 5) general and future considerations.

Efforts to remove or prevent horn growth have been the industry standard for over 100 yrs (Haaff, 1886; Phares, 1889). An early advocate for dehorning was Herman Haaff, who sawed off the horns of an aggressive bull and later his entire herd, following an attack by said bull (Kiner, 1910). The Humane Society of Illinois sought, unsuccessfully, to prosecute Haaff for cruelty to animals in 1885 for his actions (Haaff, 1886, 1888; Kiner, 1910). Haaff subsequently produced several instructional books (Haaff, 1886, 1888) under the moniker of ‘the Great Dehorner’ and aided the rapid spread of dehorning across the United States and other nations. While any discussion on dehorning as cruel was considered ‘absurd twaddle’ from some contemporary veterinarians (Phares, 1889), the consensus among producers and veterinarians was that dehorning, though painful, did not constitute cruelty. Dehorning was not considered ‘inflicting unnecessary pain’ given the benefits of raising calmer, safer animals to both the producer and animal (Haaff, 1888; Plumb, 1888; Roberts, 1893), a justification for hornless cattle that continues to be voiced (Kling-Eveillard et al., 2015; Marquette et al., 2023). As the practice of dehorning cattle spread, prosecutions also continued to be brought forward by concerned welfare groups and citizens, with results almost universally in favor of dehorning in North America, while Britain saw court decisions going both ways (Roberts, 1893). Ultimately the British parliament found consensus in favor of the animal welfare groups and enacted the Animals (Anesthetics) Act, 1919 which explicitly prohibited the dehorning of cattle above 1 mo of age, unless under a general anesthesia. This focus on general anesthesia may have inhibited the development of local anesthesia for dehorning in the UK, with the Act only being subsequently amended to allow for either general or local anesthesia in 1948 (His Majesty’s Stationery Office, 1949). The true consequence of ratifying the Act of 1919 is unclear; however, it may have increased the drive to disbud calves. For a long time, calves were not required to be provided with any analgesia or anesthesia for disbudding, despite legislation existing for their adult counterparts. While national veterinary associations strongly advocate for the use of anesthesia and analgesia (AVMA, 2023; CVMA, 2016) and nations are beginning to either ratify legislation (New Zealand, Belgium, UK) or self-regulate with market assurance programs that require effective pain mitigation regardless of cattle age (Cozzi et al., 2009; Cozzi et al., 2015; FARM, 2020; DFC, 2023), providing disbudding analgesia is still far from...
Download the full-text article.

Table 1: Examples of cornual nerve block technical variations that are presented in veterinary textbooks, extension pieces and peer-reviewed publications

<table>
<thead>
<tr>
<th>Technical aspect of the cornual nerve block</th>
<th>Citations that represent the range within the literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injected agent</td>
<td></td>
</tr>
<tr>
<td>Anesthetic agent</td>
<td>Lidocaine (Weaver et al., 2018), procaine (Thomsen et al., 2021)</td>
</tr>
<tr>
<td>Volume per side</td>
<td>1.5mL (Vickers et al., 2005), 4mL (Sutherland et al., 2019), 5mL (Stilwell et al., 2012), 6mL (Reedman et al., 2020)</td>
</tr>
<tr>
<td>Buffered/Concentrated</td>
<td>1:10 with sodium bicarbonate (Adcock and Tucker, 2020), 5% lidocaine (Doherty et al., 2007)</td>
</tr>
<tr>
<td>Epinephrine included</td>
<td>(Butler, 1967; Fierheller et al., 2012)</td>
</tr>
<tr>
<td>Time until disbudding</td>
<td>3–5min (Weaver et al., 2018), 10 min (Adam et al., 2021), 15min (Stilwell et al., 2012), 30 min (Doherty et al., 2007)</td>
</tr>
<tr>
<td>Hypodermic needle</td>
<td></td>
</tr>
<tr>
<td>Needle gauge</td>
<td>18G (Reedman et al., 2020), 20G (Fierheller et al., 2012), 22G (Adcock and Tucker, 2018)</td>
</tr>
<tr>
<td>Needle length</td>
<td>1.5in/38mm (Reedman et al., 2020), 1in/25mm (Adcock and Tucker, 2020)</td>
</tr>
<tr>
<td>Injection technique</td>
<td></td>
</tr>
<tr>
<td>Angle of injection</td>
<td>Straight (Stuttgen and Van Os, 2020), ventromedial (Kent Ames, 2013), 30° toward horn (Stewart and Alexander, 2016), 45° toward horn (UC Davis Center for Animal Welfare, 2020), fanned out (Winder et al., 2017b)</td>
</tr>
<tr>
<td>Distance from eye to horn base</td>
<td>Base of eye (UC Davis Center for Animal Welfare, 2020), 50% (Kent Ames, 2013), 66% (Anderson, 2009)</td>
</tr>
<tr>
<td>Depth of injection</td>
<td>Inject at multiple depths per block (Anderson, 2009), subcutaneously (Stuttgen and Van Os, 2020), 0.5–1.5 cm (Stewart and Alexander, 2016)</td>
</tr>
<tr>
<td>Check for intravascular injection</td>
<td>(Anderson, 2009; Weaver et al., 2018)</td>
</tr>
<tr>
<td>Other considerations</td>
<td></td>
</tr>
<tr>
<td>Additional regional anesthesia</td>
<td>Ring block (Vickers et al., 2005; Doherty et al., 2007; Adam et al., 2021), intratrochlear (Butler, 1967; Doherty et al., 2007)</td>
</tr>
<tr>
<td>Efficacy of desensitization tested</td>
<td>Pin pricks (Stilwell et al., 2012; Adcock and Tucker, 2020; Adam et al., 2021), upper eyelid ptosis (Weaver et al., 2018)</td>
</tr>
</tbody>
</table>

being universally practiced (Johnstone et al., 2021; Saraceni et al., 2021).

These first discussions on animal cruelty and dehorning of cattle occurred before effective local analgesic products were readily available. Synthetic local anesthetic agents such as procaine started to become widely available after 1904, and lidocaine (or lignocaine) was first marketed in 1949. The first published literature on the subject of providing local anesthesia for dehorning was from Emmerson in 1933. In a presentation, he noted the elevation of the veterinary profession through the use of local and general anesthetics and expressed a desire to introduce pain mitigating procedures to the profession. The verbatim description for the procedure, developed for adult dairy cattle, from this seminal paper is:

“The site of injection is located by drawing an imaginary line through the middle of the orbit and the middle of the base of the horn. About midway between the orbit and base of the horn on this imaginary line, the operator palpates with ease the lateral border of the extensive frontal bone. The hypodermic needle is inserted at this point and in a downward and inward direction keeping as close to the lateral border of the frontal bone as possible. A 20 gauge needle one and one half inches long is preferred. The needle is only inserted about half its length. About 5 c.c. of a 4% solution of procaine or any other good local anesthetic to which adrenalin has been added is then injected.”

Though the technique has remained largely unchanged, there are numerous alterations that have been recommended. Table 1 provides examples of technical variations in the CNB that have been reported in veterinary textbooks, peer-reviewed publications, and extension material. To the authors’ knowledge, there are no available published studies using a randomized study design that justifies one approach over another.

We have attempted to replicate specifically stated reasons for CNB failure by using tissue dye on calf cadavers (aged 0 – 6 wks), sent to our laboratory for non-related routine post-mortem. These investigations confirmed that injection into the aponeurosis of the temporal muscle (Browne, 1938) was surprisingly easy to achieve despite the thickness of this aponeurosis being extremely small (~2mm) in these calves (Figure 1a). It is possible to inject into the thin frontocuticular muscle (involved in moving the ear) closely adherent to subcutaneous tissue when attempting a shallow subcutaneous injection (Figure 1b). Retro-orbital fat occupies the rostral portion of the temporal fossa and may be inadvertently injected if the needle is directly rostrally, noted by Wheat (1950) who advocated for a more caudal injection site in adult cattle. In all 3 cases listed above, the structure being inadvertently injected was able to completely contain 5 mL of tissue-dye, such that the cornual nerve would not have been exposed to the injected fluid. It is reasonable to assume that technical errors of this nature, which result in reduced exposure of an anesthetic agent to the cornual nerve, may contribute to sporadic CNB failures. It remains unknown which cornual nerve blocking technique is the most reliable and repeatable.

The development of numerous iterations to the CNB presumably follows from the experience of practitioners not satisfied with success in accomplishing a desired complete desensitization of the horn bud, as reported by Butler (1967) and by current practitioner anecdotes. Behavioral responses indicative of sensitivity during disbudding include vocalization, falling, rearing, kicking, tail wagging, defection and distinct head movements (Graf and Senn, 1999; Tscherer, 2021). Such escape behaviors are less frequently observed in calves provided local anesthesia compared with those disbudded without; however, these behaviors are often greater than
a sham disbudded group, indicating incomplete desensitization in some calves. Using a CNB, Morisse et al. (1995) reported 40% of calves displaying escape behaviors while Bates et al. (2019) reported 45% (n = 11/20 calves). Thomsen et al. (2021) had 42% (n = 70/167) of calves displaying behavioral responses in calves sedated with xylazine and provided a procaine CNB. Grøndahl-Nielsen et al. (1999) observed increased escape behaviors in calves provided a CNB and hot iron disbudded compared with calves sham-disbudded also with a CNB. Fierheller et al. (2012) reported a 12.5% failure rate (n = 1/8 calves, monitored with responses to ball electrodes up to 22 min), and Winder et al. (2017) had a 6.25% failure (n = 2/30 calves, monitored as adverse behavioral responses during disbudding requiring a ‘rescue’ anesthetic) in a study investigating on-line vs. in-person CNB training techniques. Failure to effectively desensitize the horn bud, beyond technical errors, may also be due to biological variation in both the source and location of nerve branches which supply innervation to the horn bud. Innervation of the horn region has been described by many authors and texts (Butler, 1967; Godinho, 1968; Godinho and Getty, 1975; Madekurozwa, 1996). The zygomaticotemporal nerve is considered the predominant nerve supply to the bovine horn, particularly for youngstock. The zygomaticotemporal nerve originates from the ophthalmic nerve (a branch of the trigeminal cranial nerve) and typically consists of a medial and lateral branch that join in the peri-orbit and travel caudally, ventral to the facial crest within the temporal fossa, with branches of cornual nerves splitting midway along this crest to supply innervation to the horn bud (Figure 2a). However, there are noted biologically important variations to the branching pattern and course that the zygomaticotemporal and its cornual nerves take in reaching the horn bud. Observed variations on gross dissection include: the medial branch of the zygomaticotemporal exiting the orbit through a caudo-dorsal foramen in the orbital rim and never uniting with the lateral branch (n = 1/25, 4%, (Madekurozwa, 1996)); the medial branch of the zygomaticotemporal coursing within the periosteum of the temporal groove, either to unite caudally with the cornual nerves or run directly to the horn (n = 3/32, 9.4% (Lauwers and DeVos, 1966); cornual nerve branches that split from the zygomaticotemporal nerve rostral to the often instructed location for cornual nerve injection (midway or 1/3 distance from the horn base to eye (Wheat, 1950; Weaver et al., 2018), n = 3/25, 12% (Madekurozwa, 1996)). These anatomical variations may result in the cornual nerve evading the injected anesthetic agent and subsequently inadequate anesthesia. Although the zygomaticotemporal nerve is unanimously considered the predominant nerve supply to the bovine horn bud, authors note that blocking the infratrochlear nerve (Figure 2b) may be required to consistently achieve adequate desensitization (Butler, 1967; Godinho, 1968; Godinho and Getty, 1975; Madekurozwa et al., 2004). Butler, while investigating the innervation of the horn region for various farm species in 1967, performed a CNB with procaine on 10 calves. He noted that the rostral aspect of the base of the horn was sensitive to needle-prick in 11 of the 20 blocks performed (55%). When he subsequently blocked the cornual branch of the infratrochlear nerve there was complete desensitization of the horn area. Likewise, Madekurozwa using Flurogold, a neurotracer, noted the uptake of the tracer in the cornual branches of the infratrochlear nerve from the horn bud, despite being unable to identify such branches extending to the horn region on gross dissection (Madekurozwa, 1996; Madekurozwa et al., 2004). Goat kid disbudding anesthesia protocols have long identified the infratrochlear nerve as requiring specific blocking (Edmondson, 2016) and this nerve was also identified in buffalo as requiring blocking to achieve adequate anesthesia (Fouda et al., 1979). Other nerves that have been presented as providing possibly significant innervation to the horn bud region are the frontalis, sinuum frontaliun, auricularis magnus and the occipitalis major, but these nerves have yet to be identified as having clinical significance in disbudding calves (Madekurozwa, 1996). Lauwer’s dissection of adult bovine heads suggests that 26% (n = 16/62) would remain sensible after a CNB due to biological variations and secondary innervation (Lauwers and DeVos, 1966).
The initial development of the CNB was for adult dairy cows (Emmerson, 1933), and it is unclear when the block was first recommended specifically for youngstock. Though some practitioners have been advocating for local anesthesia to disbud since at least the 1950s, the earliest recommendations were not to use the CNB, but rather perform direct infiltration of the horn bud with an anesthetic agent (Gendreau, 1953). By the 1960s this infiltrative technique seemed to have lost favor to the CNB (Butler, 1967). However, the infiltrative approach is not without merit and may be worth re-investigating given potential advantages over the CNB, including: not being affected by the biological variation of nerve locations or the significance of nerves beside the cornual nerve that supply sensation to the horn bud and arguably requiring less technical skill. Recently this approach has been investigated by Bates et al. (2019), who used 2 injections of 1 mL lidocaine near the horn bud of 4–5-wk old calves before cautery disbudding. They found improved results compared with the CNB regarding adverse behavior during disbudding, and the infiltrative approach required significantly less time to reach desensitization (measured by needle prick: mean 60 s vs. 240 s). Using a ring block technique for local anesthesia has likewise found favorable results (n = 8/8 horns desensitized) (Fierheller et al., 2012), though requires more injections around the horn bud, limiting its on-farm practicality. Further infiltrative technique investigations will need consider the holistic nature of disbudding including how the approach affects wound healing time, hemostasis, calf-age limitations, stress during injection, operational processes, and producer acceptance.

The practicality of disbudding on-farm has traditionally involved manual restraint with the aid of purpose-built calf chutes, head-halters or brute strength. Sedation, typically the α2-adrenergic agonist xylazine, allows for easy handling of calves and as well as providing short-acting analgesia (Abrahamsen, 2008). However, the strength of this analgesia provided is unlikely to significantly contribute to mitigating the acute pain of disbudding, as hot-iron cautery will cause breakthrough pain responses if horn bud desensitization was inadequate (Adam et al., 2021; Grøndahl-Nielsen et al., 1999; Stilwell et al., 2010). The use of caustic paste to disbud calves also requires less physical restraint, owing to a delayed behavioral response, has been available to producers since at least the 1880s (Phares, 1889) and has been showing resurgent use on large dairies in North America (NAHMS, 2016; Saraceni et al., 2021). For example, of 217 Wisconsin dairy farmers, 61% report using caustic paste as their primary means of disbudding calves (Saraceni et al., 2021). Concerningly, there is an association between caustic paste use and reduced use of local anesthetics for disbudding: 6.0 times the odds (95% CI: > 1.0–35.7) of using local anesthesia when not using caustic paste to disbud in an Ontario survey (Winder et al., 2016), and respondents to a Wisconsin survey used lidocaine blocks 17% of the time with caustic paste disbudding compared with 30% with hot-iron cautery (Saraceni et al., 2021). Onset of pain (as measured with adverse behavioral responses/heart rate/plasma/increased sensitivity to horn region) is nonetheless rapid (within 10 min) and can be significantly reduced with the use of local anesthesia (Morisse et al., 1995; Winder et al., 2017a; Reedman et al., 2020). Failure of complete desensitization following a CNB is of equal concern for caustic paste disbudding and hot iron disbudding, and it may be particularly important to check the effectiveness of the CNB with pinpricks before applying paste, as there will not be the immediate behavioral response (compared with the iron) to indicate it is incomplete. Irrespective of disbudding technique, CNB analgesia is transient (e.g., less than 75 min in Adcock et al., 2020; 2–8 h in Fierheller et al., 2012). Consequently alternative management strategies to address the longer-term (up to 14 wk) pain or hyperesthesia from disbudding are required (Adcock and Tucker, 2018, 2020; Winder et al., 2018).

In conclusion, occasional incomplete desensitization of the horn region may have led to multiple iterations of the CNB being recommended, without a consensus on the most reliable and repeatable approach. Potential causes for CNB failure include technical error, biological variation of the cornual nerve and contribution of other nerves providing sensation to the horn region. Adapting local anesthesia approaches to include the infratrochlear nerve or a form of infiltrative or ring block may increase the success of horn

Figure 2. Post-mortem examination of nerves supplying horn bud sensation. a) The cornual nerve(*) exits the orbit, traverses the retro-orbital fat pad (#), and splits roughly midway to the horn bud. b) The cornual branch of the infratrochlear nerve(*) exits over the orbital upper rim. Figure 2a image courtesy of Alycia Drwencke.
bud anesthesia; however, more research will be needed to validate these approaches.

References

Animals (Anaesthetics) Act. 1919. 1919. 9 & 10 Geo. 5 c.54, United Kingdom.

Haaf, H. H. 1888. Haaf’s Practical Dehorner or Every Man His Own Dehorner. The Clark and Longley Company, Printers and Publishers, Chicago, IL.

His Majestry’s Stationery Office. 1949. Statutory Instruments Other than Those of a Local, Personal or Temporary Character for the Year 1948. London, UK.

Shanghai Agriculture Experiment Station, Agricultural College, MS.

Plumb, C. S. 1888. History and Reorganization. Dehorning Cattle. University of Tennessee Agricultural Experiment Station, Knoxville, TN.

Roberts, I. P. 1893. Dehorning. Cornell University Agricultural Experiment Station, Ithaca, NY.

Notes

David B. Sheedy © https://orcid.org/0000-0001-6671-432X
Sharif S. Aly © https://orcid.org/0000-0003-0330-5013
Cassandra B. Tucker © https://orcid.org/0000-0002-6014-444X
Terry W. Lehenbauer © https://orcid.org/0000-0003-0896-3939

All authors declare that they have no conflicts of interest. This article does not contain any studies with human or animal subjects and did not require IACUC approval. California Animal Health and Food Safety Lab System, Tulare for allowing access to post-mortem specimens. Graphical abstract created with BioRender.com. Funding: Edward E. Hills Fund for Educational Outreach for the Humane Treatment of Food Animals